A New Approach for CBIR Feedback based Image Classifier
نویسندگان
چکیده
منابع مشابه
A New Approach for CBIR Feedback based Image Classifier
Recent years have seen a rapid increase in the size of digital image collections. This ever increasing amount of multimedia data creates a need for new sophisticated methods to retrieve the information one is looking for. The classical approach alone cannot keep up with the rapid growth of available data anymore. Thus content-based image retrieval attracted many researchers of various fields. T...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولClassifier Ensemble Framework: a Diversity Based Approach
Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...
متن کاملA new CBIR approach based on relevance feedback and optimum-path forest classification
Recently some CBIR approaches have shown the use of relevance feedback to train a pattern classifier to select relevant images for retrieval. This paper revisits this strategy by using an optimum-path forest (OPF) classifier. During relevance feedback iterations, the proposed method uses the OPF classifier to decide which database images are relevant or not. Images classified as relevant are so...
متن کاملRelevance Feedback in Cbir Using the Rls Classifier
The Relevance Feedback has been used to improve the performance of CBIR algorithms. This paper presents a relevance feedback method based on the regularized least squares classifier, and a technique to select feedback information in order to increase the learning rate. Experimental results are presented in the paper to illustrate the performance of the proposed relevance feedback method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2011
ISSN: 0975-8887
DOI: 10.5120/1833-2457